1.	The point A has coordinates $(3, 0)$ and the point B has coordinates $(2, 2)$. The line L_1 passes through B and is perpendicular to AB .	
	(a) Find an equation of L_1	
	Give your answer in the form $ax + by + c = 0$	(5)
	The line L_2 with equation $x - 7y - 3 = 0$ intersects the line L_1 at the point C . The midpoint of AC is M .	
	(b) Find the coordinates of M.	
		(5)
	(c) Find the area of the triangle <i>ABM</i> .	(4)
	January 2020/Q6/P1	
2.	The points P , Q , R and S have coordinates $(4, 7)$, $(3, 0)$, $(10, 1)$ and $(11, 8)$ respectively.	
	(a) Show, by calculation, that the lines PR and QS are perpendicular.	(3)
	(b) Find the exact lengths of (i) PR (ii) QS	(2)
	(c) Find the area of the quadrilateral <i>PQRS</i>	(2)
	June2020/Q5/P1	

3.	The curve C_1 has equation $y = 5e^{-2x} + 4$	
	The curve C_2 has equation $y = e^{2x}$	
	The curves C_1 and C_2 intersect at the point A .	
	(a) Find the exact coordinates of A .	(4
	The tangent at A to C_1 intersects the x -axis at the point B .	
	(b) Show that the x coordinate of B is $\frac{1}{2}(5 + \ln 5)$	(5
	The tangent at A to C_2 intersects the x -axis at the point D .	
	(c) Find the area of $\triangle ABD$.	(6
	October 2020/Q8/P2	
4.	The point A has coordinates $(-4, -10)$ and the point B has coordinates $(3, 11)$ The line I passes through A and B .	
	(a) Find an equation of <i>l</i> .	(2)
	The point P lies on l such that $AP:PB=3:4$	(2)
	(b) Find the coordinates of <i>P</i> .	(2)
	The point Q with coordinates (m, n) , where $m < 0$, lies on the line through P that is perpendicular to l .	(2)
	Given that the length of PQ is $\sqrt{10}$	
	(c) find the coordinates of Q .	(6)
	The point R has coordinates $(-11, -21)$	(6)
	(d) Show that	
	(i) AB and RQ are equal in length,	
	(ii) AB and RQ are parallel.	(4)
	(e) Find the area of the quadrilateral ABQR.	(*)
	()	(2)

June2021/Q4/P2

5.	The points A and B have coordinates $(-3, -5)$ and $(7, 5)$ respectively.	
	(a) Find an equation for the line AB	
		(2)
	The point C has coordinates $(p, 1)$ where $p < 0$	
	Given that AC and BC are perpendicular,	
	(b) prove that $p = -5$	(7)
	The point D , where BCD is a straight line, is such that C divides BD in the ratio $4:3$	
	(c) Find the coordinates of D	
		(2)
	(d) (i) Find the exact length of AC	
	(ii) Hence, or otherwise, find the area of triangle ABD	(4)
		(-)
	October 2021/Q11/P2	
6.	The equation of the line L_1 is $y - 2x - 6 = 0$	
	The point P with coordinates $(2, a)$ lies on L_1	
	(a) Find the value of a	(1)
	The live I is now and include I and necessarily D	(1)
	The line L_2 is perpendicular to L_1 and passes through P	
	(b) Show that an equation of L_2 is $x + 2y - 22 = 0$	(4)
	Line L_1 crosses the x-axis at the point A and line L_2 crosses the x-axis at the point B	
	The point C has coordinates (m, n) such that $m > 0$ and $n < 0$	
	The length of AC is $5\sqrt{2}$ and the gradient of BC is $\frac{1}{4}$	
	(c) Find the value of m and the value of n	
		(9)
	(d) Find the area of quadrilateral ACBP	(3)
		(0)
	January 2022/Q10/P1	

7. The point A has coordinates (-5, 3), the point B has coordinates (4, 0) and the point C has coordinates (-1, 5).

The line l passes through C and is perpendicular to AB.

(a) Find an equation of *l*.

Give your answer in the form ax + by + c = 0 where a, b and c are integers.

(4)

The line l intersects AB at the point D.

(b) Show that the coordinates of D are (-2, 2).

(3)

(c) Show that l is not the perpendicular bisector of AB.

(2)

(d) Find the value of $\tan \angle ABC$.

Give your answer in its simplest form.

(4)

January 2023/Q2/P1

8. The straight line L_1 passes through the point A with coordinates (4, 7) and has gradient m, where m < 0

Another straight line L_2 is perpendicular to L_1 and passes through the point B with coordinates (4, k) where $k \neq 7$

The lines L_1 and L_2 intersect at the point C.

Given that the y coordinate of C is Y

(a) show that
$$Y = \frac{7 + m^2 k}{m^2 + 1}$$

(7)

Given that the triangle ABC is isosceles,

(b) find the value of *m*

(5)

June2022/Q9/P2

9.	The points A and B have coordinates $(-6, 8)$ and $(12, 2)$ respectively.	
	(a) Find an equation of the straight line passing through A and B in the form $ax + by + c = 0$, where a , b and c are integers to be found.	(2)
	(b) Find the exact length of AB	(3)
	The point X with coordinates (m, n) lies on AB such that $AX: XB = 1:2$	(2)
	(c) Find the value of m and the value of n	(2)
	The line L passes through the point X and is perpendicular to AB The point C with coordinates (p, q) lies on L where $p > 0$ and $q > 0$	
	Given that AB is a diameter of a circle and C also lies on the circumference of the circle	e,
	(d) find	
	(i) the exact value of p	
	(ii) the exact value of q	(7)
	(e) Find the exact area of triangle ABC	(3)
	June2023/Q8/P2	
10.	The point A with coordinates (12,14) and the point B with coordinates $(q, 2)$ where q is a constant, lie on the straight line with equation $3y - 2x - p = 0$ where p is a constant.	
	(a) Find the value of p and the value of q	(3)
	The line L is perpendicular to AB and passes through the point X , which lies on AB such that $AX: XB = 1:2$	
	(b) Find an equation for L in the form $ax + by + c = 0$ where a, b and c are integers to be found.	
		(6)
	October 2023/Q4/P1	

11.	The line l passes through the point A with coordinates $(-2, 2)$ and the point B with coordinates $(3, 12)$	
	The point C with coordinates (p, q) lies on l such that $AC : CB = 3 : 2$	
	(a) Find the value of p and the value of q	(2)
	The line k is perpendicular to l and passes through the point C	
	(b) Show that an equation of k is $2y + x - 17 = 0$	(4)
	The line k crosses the x -axis at the point D	(-)
	(c) Find the exact length of CD	
		(3)
	The point X with coordinates (m, n) lies on l such that	
	area of triangle $DXC = 80 \mathrm{units^2}$	
	Given that $m > 0$	
	(d) find the value of m and the value of n	
		(7)
	June2024/Q6/P1	
12.	The point A has coordinates $(3, 2)$, the point B has coordinates $(8, 3)$ and the point C has coordinates $(4, 7)$	
	(a) Show that ABC is an isosceles triangle.	(2)
	The midpoint of BC is M	(2)
	(b) Find an equation of the line that passes through A and M	
	Give your answer in the form $y = mx + c$	(3)
	The points A, C and D are collinear such that $AD = kAC$ $(k > 1)$	(3)
	Given that $\angle ABD = 90^{\circ}$	
	(c) find the coordinates of <i>D</i> Show your working clearly.	
	Show your working cicarry.	(8)

June2025/Q2/P2