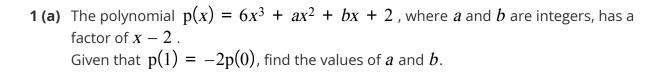


1 (a) 
$$p(x) = 15x^3 + 22x^2 - 15x + 2$$

Find the remainder when p(x) is divided by x + 1.

(2 marks)

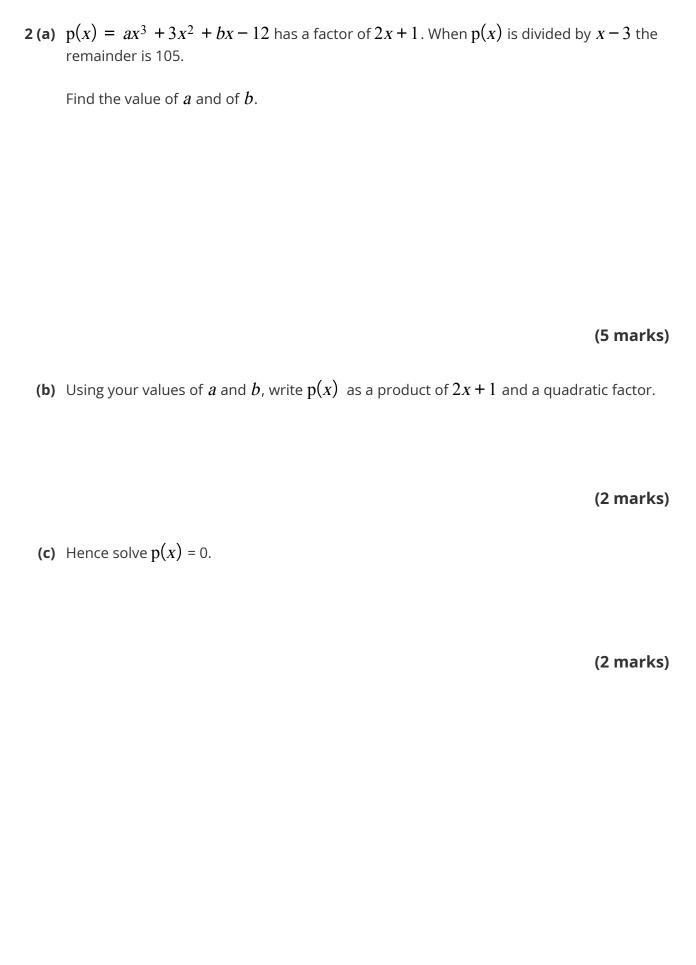
**(b)** (i) Show that 
$$x + 2$$
 is a factor of  $p(x)$ .


[1]

(ii) Write 
$$p(x)$$
 as a product of linear factors.

[3]

(4 marks)






(4 marks)

- **(b)** Using your values of a and b,
  - (i) find the remainder when p(x) is divided by 2x 1
  - (ii) factorise p(x).

(4 marks)



3 (a) 
$$p(x) = 6x^3 + ax^2 + 12x + b$$
, where a and b are integers.

p(x) has a remainder of 11 when divided by x-3 and a remainder of -21 when divided by x+1.

Given that p(x) = (x-2)Q(x), find Q(x), a quadratic factor with numerical coefficients.

(6 marks)

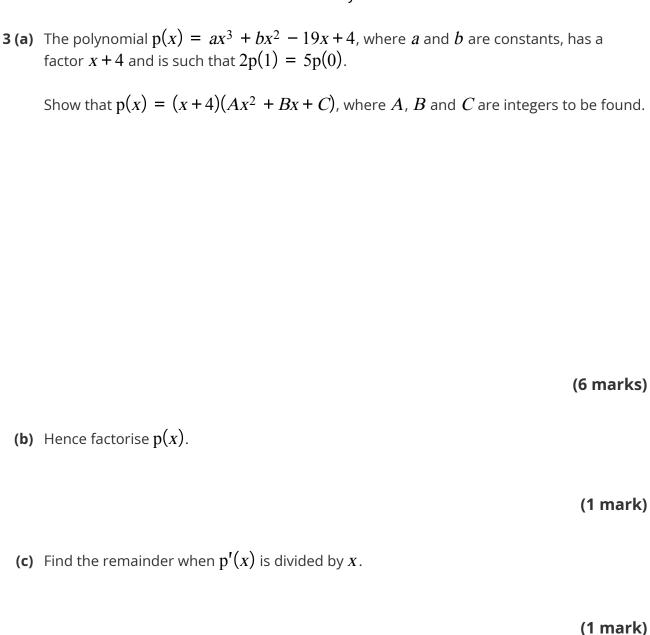
**(b)** Hence solve p(x) = 0.

(2 marks)

4 The three roots of p(x) = 0, where  $p(x) = 2x^3 + ax^2 + bx + c$  are  $x = \frac{1}{2}$ , x = n and x = -n, where a, b, c and n are integers. The y-intercept of the graph of y = p(x) is 4. Find p(x), simplifying your coefficients.

(5 marks)

| Very Hard Questions |                                                                                                                                                                                                         |           |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1 (a)               | The polynomial $p(x) = ax^3 - 9x^2 + bx - 6$ , where $a$ and $b$ are constants, has a factor of $x-2$ . The polynomial has a remainder of 66 when divided by $x-3$ . Find the value of $a$ and of $b$ . |           |
|                     |                                                                                                                                                                                                         |           |
|                     |                                                                                                                                                                                                         | (4 marks) |
| (b)                 | Using your values of $a$ and $b$ , show that $p(x) = (x-2)q(x)$ , where $q(x)$ is a factor to be found.                                                                                                 | quadratic |
|                     |                                                                                                                                                                                                         | (2 marks) |
| (c)                 | Hence show that the equation $p(x) = 0$ has only one real solution.                                                                                                                                     |           |
|                     |                                                                                                                                                                                                         | (2 marks) |


2 (a) 
$$p(x) = 2x^3 - 3x^2 - 23x + 12$$

Find the value of  $p\left(\frac{1}{2}\right)$ .

(1 mark)

**(b)** Write p(x) as the product of three linear factors and hence solve p(x) = 0.

(5 marks)

